跳转到内容

英文维基 | 中文维基 | 日文维基 | 草榴社区

User:Hmgqzx/sandboxII

维基百科,自由的百科全书

Template:古生物学 古生物学 or palaeontology (發音: /ˌplɪɒnˈtɒləi/, /ˌplɪənˈtɒləi/ or /ˌpælɪɒnˈtɒləi/, /ˌpælɪənˈtɒləi/) is the scientific study of 史前史生命. It includes the study of 化石s to determine 生命体s' 演变 and interactions with each other and their environments (their 古生态学). As a "历史学的 science" it attempts to explain 成因 rather than conduct experiments to observe effects. Paleontological observations have been documented as far back as the 5th century BC. The science became established in the 18th century as a result of 乔治·居维叶's work on 比较解剖学, and developed rapidly in the 19th century. The term itself originates from Greek: παλαιός (palaios) meaning "old, ancient," ὄν, ὀντ- (on, ont-), meaning "being, creature" and λόγος (logos), meaning "speech, thought, study".

古生物学处在生物学地质学的交界处,和考古学的边界更加是不易分辨。它现在广泛运用了其他科学支系的技术,包括生物化学数学以及工程学。借由这些技术,古生物学家去发现更多关于生命的进化历史的事情, almost all the way back to when 地球 became capable of supporting 生命, about 3,800百萬年前. 随着知识增加, 古生物学已经发展出更加专业的子分类 , 有些人专注于研究生物体 化石,有人研究生态学和有关环境的历史,如古气候学

实体化石 and 遗迹化石 are 主要证据 about 古生命, and 地球化学的证据已帮助破译 演变 of 生命 before 有足够大的 生命体s to 留下化石s.

估计现存化石的时期是必要的,但也难以实现: 有时 相邻的 地层允许使用放射性定年法, which provides absolute dates that are accurate to within 0.5%, 但更加经常的是古生物学家必须依靠 相对年龄测定 by 解决"拼图" of 生物地层学.

分类 古生命体也很困难, 因为许多生命体并不适用于生物分类法 that 普遍用来分类现在幸存的生命体, and 古生物学家 更加经常 使用 支序分类学 来 描绘出 演化的 "family trees".

(The final quarter of 20世纪)20世纪的前25年 见证了 分子系统发生学(Molecular phylogenetics)的发展, which 研究调查 生命体间的亲缘关系 by 测量他们的基因组中的DNA的相似度。

分子系统发生学 现用来 估计 物种 diverged 的时期 , but 有争议 about (这种估计所依赖的)分子钟的可靠性。

Overview

[编辑]
File:古生物学家 chipping.jpg
A 古生物学家 carefully chips rock from a column of 恐龙 vertebrae.
File:Joda 古生物学家.jpg
A palaeontologist at work at John Day 化石 Beds National Monument
The preparation of the 化石ized bones of Europasaurus holgeri

最简单的定义是"对古生命的研究".[1] 古生物学 寻找 几个方面的信息 of 过去的生命体s: "他们的特性和起源,他们的 环境and 演变, and what they can tell us about the 地球's organic and inorganic 过去".[2]

A 历史学的 science

[编辑]

古生物学是历史科学之一, along with 考古学, 地质学, 生物学, 天文学, 宇宙学, 语言学 and 历史学 它本身.[3] 这意味着它主要致力于 描述过去的现象 and 重现他们的成因.[4] 所以它主要有3个要素: 描述现象; 建立发展出统一的理论 about the 成因 of 各种类型的change; and 应用这些理论 to 特定事实.[3]

当试图解释过去的现象时, 古生物学家s and 其他的历史学家一样,通常是 建立 一连串假定 about the 成因 ,然后寻找确凿证据, a piece of 证据 that 表明s that 其中的一个假定比其他的假定能解释更好。有时 the 确凿证据 被发现 by 幸运的意外 during 其他研究时. 例如,发现 by 路易斯·沃尔特·阿尔瓦雷茨(Luis Alvarez) and 沃爾特·阿爾瓦雷茨 of an -rich layer at the 白垩纪第三纪 boundary 让 小行星撞击 and 火山作用 成为 最受喜爱的(favored)解释 for the 白垩纪-第三纪灭绝事件.[4]

另一种主要的科学形式-实验科学,which is often said to work by 设计实验s to 证明假定错误 about the workings and 成因 of 自然现象 – 注意 that 这种方法不能证明假定正确,因为往后可能有实验证明它错误。 然而,当面对完全意想不到的现象时, 例如 the first 证据 for 看不见的辐射, 实验科学家 通常使用相同的方法as 历史学家: 建立一连串假定 about the 成因 and 然后寻找一个 "确凿证据".[4]

[编辑]

古生物学 lies on the boundary between 生物学 and 地质学 since 古生物学 focuses on the record of past 生命 but its main source of 证据 is 化石s, which are found in rocks.[5] For 历史学的 reasons 古生物学 is part of the 地质学 系s of many universities, 因为在19世纪和20世纪早期,地质学系发现了估计岩层年代的重要古生物学证据 while 生物学系s showed little interest.[6]

古生物学也与考古学有一些重叠, which 主要 works with objects made by humans and with human remains, while 古生物学家s 感兴趣于 特性和演变 of 人类 as 生命体s. 当处理 证据 about 人类, 考古学家 and 古生物学家 可能会一起工作 – 例如, 古生物学家 might 识别 动物或植物的化石 around 考古遗址遗迹), to 发现 曾居住在此的人们吃了什么; or 他们 might 分析当时的气候 when 人类居住在此.[7]

File:化石 Tyranausaurus Rex at the Royal Tyrell Museum, Alberta, Canada.jpg
Analyses using 工程学 techniques show that 暴龙 had a devastating bite, but raise doubts about how fast it could move.

另外, 古生物学也经常使用其他学科的方法技术, 包括 生物学, 生态学, 化学, 物理学 and 数学.[1] 例如, 地球化学的 特征 from 岩石能 may 帮助 to 发现何时生命第一次出现 on 地球,[8] and 分析 of 同位素比 能帮助 to 确定气候 变化 and 甚至解释 主要的 transitions ,像二叠纪-三叠纪灭绝事件.[9] 一个相对较近的学科, 分子系统发生学, 常用来 重建 演化的 "family trees" by 使用比较 of 不同现代生命体s' DNA and RNA ; 它现在也被用来 估计 日期 of 重大演化的发展, 尽管这种方法仍有争议 because of 怀疑 about "分子钟"的可靠性.[10] 工程学中的技术 现在也被用来分析 古生命体可能是如何 worked 的, 例如 暴龙能移动多快 and 它的咬力有多大.[11][12]

A 组合 of 古生物学, 生物学, and 考古学, 古神经病学(paleoneurology) is the study of 颅腔模型 of 物种s related to humans to 了解人类大脑的演变 . [13]

古生物学 甚至 对 太空生物学有贡献, the 调查 of 可能存在的生命 on 其他行星, by 发展模型 of 生命如何出现 and by 提供技术方法 for 检测生命存在的证据 .[14]

Subdivisions

[编辑]

As knowledge has increased, 古生物学 has developed specialised subdivisions.[15] 古脊椎动物学 concentrates on 化石s of 脊椎动物, from the earliest 鱼类 to the immediate ancestors of modern 哺乳动物s. 古无脊椎动物学 deals with 化石s of 无脊椎动物s such as molluscs, arthropods, annelid worms and 棘皮动物s. 古植物学 focuses on the study of 化石 plants, but traditionally includes the study of 化石 algae and fungi. 孢粉学, the study of pollen and spores produced by land plants and protists, straddles the border between 古生物学 and botany, as it deals with both living and 化石 生命体s. Micro古生物学 deals with all microscopic 化石 生命体s, regardless of the group to which they belong.[16]

Instead of focusing on individual 生命体s, 古生态学 examines the interactions between different 生命体s, such as their places in 食物链s, and the two-way interaction between 生命体s and their environment[17] – for example the development of oxygenic photosynthesis by 细菌 hugely increased the productivity and diversity of ecosystems,[18] and also caused the oxygenation of the atmosphere, which in turn was a prerequisite for the 演变 of the most complex eucaryotic cells, from which all 多细胞 的生命体s are built.[19] 古气候学,虽然有时被视为古生态学的一部分,[16] 着力于地球气候的历史和改变机制。[20] – which 有时包括演变的发展历程, 例如: 陆生植物的快速扩张发展 in the 泥盆纪时期 移除了更多的大气中的二氧化碳, 减少了温室效应 and 因此帮助造成了冰河时期 in 石炭纪时期.[21]

生物地层学, the use of 化石s to work out the chronological order in which rocks were formed, is useful to both 古生物学家s and geologists.[22] Biogeography studies the spatial distribution of 生命体s, and is also linked to 地质学, which explains how 地球's geography has changed over time.[23]

Sources of 证据

[编辑]

Body 化石s

[编辑]
File:Marrella (化石).png
This Marrella specimen illustrates how clear and detailed the 化石s from the Burgess Shale lagerstätte are.

化石s of 生命体s' 遗体 通常是最有益的证据类型. 最常见的类型是 木材, 骨头, and 贝壳.[24] 化石isation is a rare event, and most 化石s 被破坏 by 侵蚀 or 变质作用 before 他们能被 observed. Hence the 化石 record is very incomplete, increasingly so further back in time. Despite this, it is often adequate to illustrate the broader patterns of 生命's history.[25] There are also biases in the 化石 record: different environments are more favorable to the preservation of different types of 生命体 or parts of 生命体s.[26] Further, only the parts of 生命体s that were already 矿化的(mineralised) are usually preserved, such as the shells of molluscs. Since most 动物 物种s are soft-bodied, they decay before they can become 化石ised. As a result, although there are 30-plus phyla of living 动物s, two-thirds have never been found as 化石s.[27]

间或, 不平常的环境或许能将软组织保存下来。These lagerstätten 允许古生物学家 检查 动物内部的解剖学,这些动物在别的沉积中只被外壳、spines、爪子等代表。然而,即使是 lagerstätten 也只呈现了一幅不完整的当时生命图景。 生活在那时的多数生命体可能不会被代表,因为 lagerstätten 只限定在环境的一个狭窄范围 :例如是 soft-bodied 生命体被泥石流等事件快速地保存 ; 同时 the 造成快速埋葬的异常事件 使得研究动物生活的正常(常态)环境很困难。[28] 化石记录的稀少常意味着在这些化石的之前或之后,生物生存了很长时间,因为相对于生物整个的发展过程,前期和末期保留下化石的机率很小 – 这就是所谓的模糊效应( Signor-Lipps effect).[29]

遗迹化石s

[编辑]
File:寒武纪Rusophycus.jpg
寒武纪 遗迹化石s including Rusophycus, made by a trilobite

遗迹化石s consist 主要 of 遗迹 and 洞穴, 也包括 粪化石s (化石 排泄物) and 进食后留下的痕迹.[24][30] 遗迹化石s are 特别有意义 because they represent a data source that is not limited to 动物s with easily 化石ized hard parts, and 他们反映了 生命体的行为习惯。 Also many traces date from significantly earlier than the body 化石s of 动物s that are thought to have been capable of making them.[31] 然而 精确分配 of 遗迹化石s to 他们的制造者 is 通常不可能, 但 遗迹 可能 for example 提供最早的物理证据 of the 外观 of (moderately)中度复杂的动物 (comparable to 地球worms).[30]

地球化学的 observations

[编辑]

地球化学的 观察结果 也许能帮助 to 推论 全球生物活性层次(the global level of biological activity), or the affinity of a certain 化石. For example 地球化学的 features of rocks 可能 揭露 生命 何时第一次出现在地球上,[8] and 可能提供 证据 of 真核细胞的 presence, 所有的多细胞生命体由此发展而来.[32] 分析 of 同位素比 也许能帮助解释 主要的 transitions ,像二叠纪-三叠纪灭绝事件.[9]

分类ing 古生命体s

[编辑]

==

[编辑]
Tetrapods

Amphibians

Amniotes
合弓纲s

Extinct 合弓纲s

   

哺乳动物s

Reptiles

Extinct reptiles

Lizards and snakes

古蜥s
 ? 

Extinct
古蜥s

Crocodilians

恐龙s
 ? 

Extinct
恐龙s


 ? 

鸟类s

Simple example cladogram
    Warm-bloodedness evolved somewhere in the
合弓纲–哺乳动物 transition.
 ?  Warm-bloodedness must also have evolved at one of
these points – an example of convergent 演变.[33]
Levels in the 生物分类法

命名 groups of 生命体s in a way (that 清晰且广泛同意) is 重要的, 因为引起古生物学的一些争论仅是因为名字上的误解。[34] 生物分类法 通常用来 分类 现在幸存的生命体s, but 陷入困难 when 处理 新发现的 生命体s that are 有显着性差异 from 已知物种.例如: 很难决定 at what level to place a new higher-level grouping, e.g. or family or order;这是重要的,因为 the Linnean rules for naming groups 与 their levels 相关联, and 因此如果一个 group 移动到一个不同的 level,它必须重新命名.[35]

古生物学家通常也使用支序分类学的方法, a 技术方法 for working out the 演化的 "family tree" of a set of 生命体s.[34] It works by the logic that, 如果相比其他的groups,groups B and C 与 group A间有更多的相似性,那么比起其他的groups,B and C 与A的关系就更近。用以比较的特征可能是 解剖学意义上的(例如有无脊索),或者是分子层次上的(分子亲缘关系), 通过比较DNA蛋白质的序列。 成功分析后得到的结果 is a 演化支(拥有同一祖先的groups)的层级。 理想状况下, the "family tree" 只有两条分支 leading from 每个节点 ("接合点"), but 有时信息太少以致难以实现这点 and 古生物学家只有凑合着用(?-make do with)有数个分支的节点. 进化枝的方法有时是不可靠的,易犯错的, 因为两种动物虽然不具亲缘关系,但长期生活在相同或相似的环境中就会(趋同地演化)出相似特征,例如翅膀或camera eyes  – 在分析时必须到考虑这点.[33]

演化发展生物学, 通常缩写为 "Evo Devo", 也能帮助古生物学家 to produce "family trees". 例如 the 胚胎学的 development of 一些现代腕足动物 显示腕足动物也许是 the halkieriid的后代, which已在寒武纪时期灭绝。[36]

Estimating the dates of 生命体s

[编辑]

古生物学 seeks to map out how living things have changed through time. A substantial hurdle to this aim is the difficulty of working out how old 化石s are. Beds that preserve 化石s typically lack the radioactive elements needed for 放射性定年法. This technique is our only means of giving rocks greater than about 50 million years old an absolute age, and can be accurate to within 0.5% or better.[37] Although 放射性定年法 requires very careful laboratory work, its basic principle is simple: the rates at which various radioactive elements decay are known, and so the ratio of the radioactive element to the element into which it decays shows how long ago the radioactive element was incorporated into the rock. Radioactive elements are common only in rocks with a volcanic origin, and so the only 化石-bearing rocks that can be dated radiometrically are a few volcanic ash layers.[37]

Consequently, 古生物学家s must usually rely on 地层学 to date 化石s. 地层学 is the science of deciphering the "layer-cake" that is the 沉积(沉淀物)ary record, and has been compared to a 七巧板.[38]


Rocks normally form relatively horizontal layers, with each layer younger than the one underneath it. If a 化石 is found between two layers whose ages are known, the 化石's age must lie between the two known ages.[39]


Because rock sequences are not continuous, but may be broken up by faults or periods of 侵蚀, it is very difficult to match up rock beds that are not directly next to one another. However, 化石s of 物种s that survived for a relatively short time can be used to link up isolated rocks: this technique is called 生物地层学. For instance, the conodont Eoplacognathus pseudoplanus has a short range in the Middle Ordovician period.[40]


If rocks of unknown age are found to have traces of E. pseudoplanus, they must have a mid-Ordovician age. Such index 化石s must be distinctive, be globally distributed and have a short time range to be useful. However, misleading results are produced if the index 化石s turn out to have longer 化石 ranges than first thought.[41]


地层学 and 生物地层学 can in general provide only relative dating (A was before B), which is often sufficient for studying 演变. However, this is difficult for some time periods, because of the problems involved in matching up rocks of the same age across different 大陆s.[42]

Family-tree 关系也许能帮助 减少 谱系(lineages)首次出现时的 日期. 例如, 如果B或C的化石在 X million years ago, and 计算出来的 "family tree" 说 A 是 B and C的祖先之一, 那么 A 在X million years ago更早之前就已演变完成(then A must have evolved)。

也有可能估计 多久之前 两个现存的演化支就已 diverged – 例如,它们最后的共同祖先大约多久前肯定还存在 – by 假设 that DNA 突变以恒定速率累积. These "分子钟s", 然而, 是不可靠的, and 只提供非常粗略的时间: 例如,它们没能足够精确和可靠地去估计 在何时 the groups that feature in the 寒武纪大爆发 first evolved,[43] and (?)-不同技术中也许会因为某个因素变化,令估计结果不同(produced by different techniques may vary by a factor of two)[10]

Overview of the history of 生命

[编辑]

生命的演化历史可以追溯到比3,000百萬年前更早, 可能远至3,800百萬年前. 地球在大约4,570百萬年前形成 and, after a collision that 月球 在大约40 million years later形成, 也许在约4,440百萬年前能冷却得足够快以形成大气层和海洋.[44] 然而有证据显示月球 from 4,000 to 3,800 百萬年前有一个后期重轰炸期. 如果, as seem likely, 当时在地球也有这样的轰炸, 首次出现的大气层和海洋也许会被剥夺掉。[45] 最早的 明确的 关于地球上的生命 的证据 dates to 3,000百萬年前,( 尽管已经reports, 但仍常有争议), 3,400百萬年前细菌化石 和 地球化学中关于生命出现的证据 。3,800百萬年前.[8][46] 一些科学家提议 that 地球上的生命是从其他地方播种而来,[47] 但大多数研究集中在 各种解释 of 生命如何能在地球上自然出现.[48]

This wrinkled "elephant skin" texture is a 遗迹化石 of a non-叠层石 微生物席.
The image shows the location, in the Burgsvik beds of 瑞典, where the texture was first identified as 证据 of a 微生物席.[49]

For about 2,000 million years 微生物席(由微生物群落组成), were the 统治地位的 生命 on 地球.[50]


The 演变 of oxygenic photosynthesis 使得它们扮演了重要的角色 in the oxygenation of the atmosphere[51]from about 2,400百萬年前.


大气的改变提高了它们作为演变的“托儿所”的效力(effectiveness)。[52]


然而真核细胞(内部结构复杂的细胞)也许在更早前就已出现, 当它们获得能力在新陈代谢中将氧气从毒物转换为强大的能量来源,它们的演变加速了,。

这种革新也许是来自原始的真核细胞俘获以氧气供能的细菌作为内共生体 and 将它们转变为名叫线粒体细胞器.[53]

最早的证据 of 拥有如线粒体等细胞器的复杂真核细胞s , 起始于1,850百萬年前.[19]

多细胞生命只由真核细胞组成 , and the 最早的证据 for it 是弗朗斯维尔化石群(Francevillian Group Fossil) from 2,100百萬年前,[54] 尽管 细胞分化 for 不同功能 第一次出现在 between 1,430百萬年前 (一种可能的真菌) and 1,200百萬年前 (一种相当可能的 红藻). 有性生殖 may be 细胞分化的先决条件之一, 因为一个无性生殖的多细胞生命体 might be 处于危险 of 被占据 by 无赖细胞(rogue cells) that 保持再生能力.[55][56]

File:欧巴宾海蝎 BW2.jpg
欧巴宾海蝎 made the largest single contribution to modern interest in the 寒武纪大爆发.

已知的最早的动物刺细胞动物 from about 580百萬年前, 但因其具有现代特征,所以在此之前肯定已经有更早的动物存在。[57]  ?-[约548百萬年前的之前,早期的动物化石很稀少,因为它们没有 develop mineralized hard parts that 化石ize easily].[58] 最早的现代特征的两侧对称动物出现在寒武纪早期, along with 一些 "不可思议的离奇动物" that与现代动物在外观上具有很少的相似之处(形状古怪). 有很长一段时间的争论 about 是否寒武纪大爆发 was 真的是 a 非常迅速的时期 of 演化的 experimentation; 另一种观点是 that 现代特征的动物更早前已经开始演化 but 它们祖先的化石还没有找到而已, 或 that the "不可思议的离奇动物"(布尔吉斯页岩动物群 weird wonder)是与现有动物的祖先相近的动物(即在演化中是现代群的干群).[59] 脊椎动物 remained an obscure group until 第一条有颌的鱼在奥陶纪后期出现。[60][61]

生命从水生到陆生 需要 生命体s to 解决数个问题, 包括对drying out的防护 and 支持他们自身对抗重力[62][63][64](?)-最早的证据 of 陆生植物and 陆生无脊椎动物 大约从476百萬年前490百萬年前开始各自出现.[63][65] The lineage that produced 陆生脊椎动物 evolved later but very rapidly( between370百萬年前 and 360百萬年前);[66] recent discoveries have overturned earlier ideas about the history and driving forces behind their 演变.[67] 陆生植物 were 如此成功 that 以至于他们造成了一场 生态危机 in 泥盆纪后期, until the 演变 and spread of fungi that could digest dead wood.[21]

At about 13厘米(5.1英寸) the Early 白垩纪 Yanoconodon was longer than the average 哺乳动物 of the time.[68]
s are the last surviving 恐龙s.[69]

二叠纪时期合弓纲,包括哺乳动物的祖先,可能已经统治支配了陆地环境,[70]二叠纪-三叠纪灭绝事件 251百萬年前 到来 very close to 擦掉 复杂的生命.[71] 这场灭绝显然非常突然,至少对于脊椎动物来说。[72] 在从这场灾难缓慢恢复的过程中, a previously obscure group, 古蜥s, became 最丰富和多样化的陆生脊椎动物. One 古蜥 group,恐龙, were 统治地位的陆生脊椎动物 for the rest of the 中生代,[73] and 鸟类 进化出来 from one group of 恐龙.[69] 这一时期幸存的哺乳动物的祖先只有小的、主要在夜间活动的食虫动物, but this apparent set-back may have accelerated the development of 哺乳动物ian traits such as 温血性 and 毛发.[74] (65百萬年前)白垩纪-第三纪灭绝事件之后, 杀掉非鸟类的恐龙s – 鸟类是唯一仅存的恐龙s – 哺乳动物 迅速增长 in 大小和多样性,and(?)-一些接管了天空和海洋。[some took to the air and the sea].[75][76][77]

A modern 社会性昆虫 collects pollen from a modern 开花植物.

化石 证据 表明s that 开花植物s 出现 and 迅速多样化 in白垩纪早期, between 130百萬年前 and 90百萬年前.[78] 它们迅速增加,统治了陆地生态系统,被认为是与传粉昆虫的共同演变推动所致。[79] 社会性昆虫在大约相同的时期出现 and, 尽管它们的数量在 昆虫"family tree" 占很小一部分, 但现在在整个昆虫群中的构成了超过50%.[80]

人类从upright-walking (其最早的化石能追溯到超过6百萬年前)的一个世系进化出来.[81] 尽管这个世系的早期成员有黑猩猩般大小的, 大约有现代人类的25%大,但仍有迹象表明在大约3百萬年前之后脑的大小还在稳定增长。[82] 有一个长期的辩论 about “现代”人类是否是 非洲的一小支人类群体 的后代(which 然后在大约距今12万5千年到六万年间,离开非洲,迁移到世界各地 and 替代了之前的有人类特征的物种),or 迁徙出去后与全球许多区域的当地直立人群体发生混血(人类多地起源说)。[83]

生物集群灭绝

[编辑]

Template:Annotated image/灭绝

至少从542百萬年前开始,地球上的生命就已遭受过偶然发生的生物集群灭绝。尽管这是当时的灾难,但生物集群灭绝有时能加速地球上的生命的演化。 When dominance of particular 生态位s passes from one group of 生命体s to another, it is rarely because the new 统治地位的 group is "superior" to the old and 通常是因为一场灭绝事件消除了占统治地位的 the old group and 为new one 辟开了新道路。[84][85]

化石记录似乎显示灭绝的速度正在缓慢下来, with both 生物集群灭绝间的距离越来越长 and the average and background rates of 灭绝 正在减少。 然而并不确定真正的灭绝速度已经改变,因为这两个观察结果能以如下几个方式解释:[86]

(?)-* 过去的5亿年前或更早,海洋环境也许对生命更加舒适 and 不易受到生物集群灭绝的攻击:在湖海的更深处,溶解氧越来越多; 陆生生命的发展 减少了 the 营养物质的耗尽 and hence the risk of 富营养化 and 缺氧事件;海洋生态系统更加多样化,使得食物链不太可能瓦解。 [87][88]

  • Reasonably 完整的化石非常稀少,大多数灭绝的生命体 are represented only by 局部化石s, and 在最老的岩层中,完整的化石是最少的。所以古生物学家肯定会错误地分配一些相同生命体的不同部分到不同的genera, ?[为了容纳这些发现,通常单独定义出一个genera]。 – 奇虾的故事可以作为一个例子。

[89]

在越老的化石中,这种错误越容易犯下,因为通常任何living 生命体都有不同的片段。 许多 "不必要的" genera are 代表 by 片段 that 不再发现, and 这些 "不必要的" genera 似乎 become 很快就灭绝了.[86]

Template:Phanerozoic 生物多样性

化石记录中的生物多样性, which is

"the number of distinct genera alive at any given time; that is, those whose first occurrence predates and whose last occurrence postdates that time"[90]

显示了一个不同的趋势: a 相当迅速的增加 from 542 to 400 百萬年前, a 轻微的下降 from 400 to 200 百萬年前(其中灭绝性的二叠纪-三叠纪灭绝事件 是重要因素之一), and a 迅速的增加 从200百萬年前至今.[90]

History of 古生物学

[编辑]
This illustration of an Indian elephant jaw and a mammoth jaw (top) is from Cuvier's 1796 p猿r on living and 化石 elephants.

尽管 古生物学在大约1800年建立, 更早时已有思想家注意到了关于化石记录的方面。 古希腊哲学家 色诺芬尼 (570–480 BC)从?[ 化石 sea shells] 总结出:陆地的一些区域曾经在水下.[91] 到了中世纪,波斯博物学家 伊本·西那,讨论了化石s and 提议 a 理论 of 石化液(petrifying fluids) (Albert of Saxony (philosopher)在14世纪将其详尽)。[92] 中国博物学家 沈括 (1031–1095) 提出 a 理论 of 气候变化 ,根据某地区石化竹子的存在,因为在他的时代,那个地区对竹子来说太干燥了。.[93]

In 近代史, 作为启蒙时代自然哲学中一个不可分割的改变部分,对化石的系统研究出现了。在18世纪末期,乔治·居维叶's work 建立了比较解剖学 as 一个科学学科 and, by 证明一些形成化石的动物没有幸存的动物与之相似, 论证 that 这些动物可能灭绝,引导了古生物学的萌芽.[94]关于化石记录的知识扩展也在地质学的发展中扮演了越来越重要的角色, 特别是在地层学.[95]

19世纪上半叶,地质学和古生物学的活动日益好了起来,地质学协会和博物馆的增加[96][97] 以及专业的地质学家和化石专家人数的增加.非纯粹科学的原因也使得兴趣增加,因为地质学和古生物学帮助实业家去发现和开采自然资源 例如.[98]

这(活动和专家)使得,关于地球生命历史的知识急速增加 and 使对地质年代的定义有所进展, 主要依据化石证据. In 1822 Henri Marie Ducrotay de Blanville,Journal de Phisique的编辑, 创造了单词"palaeontology"(古生物学) to 指代 the 通过化石对古代生活的生命体进行的研究。[99] 随着关于生命历史的知识继续增加, it became日益明显的 that 有一些连序系列(successive order) to 生命的发展过程. ?-This 推动发展了(encouraged) 早期的演化理论 on the 物种变迁论(Transmutation of species).[100] 在1859年查尔斯·达尔文出版物种起源后 , 许多古生物学的注意点转移至理解演变的途径(path), 包括人类演变, and 演化的理论.[100]

Haikouichthys, from about 518百萬年前 in China, may be the earliest known 鱼类.[101]

The last half of the 19th century 见证了 古生物学活动的惊人发展, 尤其是在北美洲.[102] 到了20世纪,这种趋势仍在继续,(?)-随着地球其他地区开放了系统的化石采集。20世纪末期在中国发现的化石尤其重要,因为它们提供了新的信息 about the 最早的动物演变(最早的动物化石)、早期鱼类(昆明鱼-最早的脊椎动物)、恐龙和鸟类的演变。[103]

20世纪末的过去数十年 saw 对生物集群灭绝 and 其在地球生命演变中扮演的角色 重燃兴趣。[104] 对这也有重燃兴趣:寒武纪大爆发 that 似乎见证了 the 发展改变 of the (?)body plans of 大多数动物. 埃迪卡拉生物群的化石发现 and 古生物学的发展 扩展了知识 about 远在寒武纪之前的生命历史.[59]

Increasing awareness of Gregor Mendel's pioneering work in genetics led first to the development of population genetics and then in the mid-20th century to the modern 演化的 synthesis, which explains 演变 as the outcome of events such as 突变s and horizontal gene transfer, which provide genetic variation, with genetic drift and 自然选择 driving changes in this variation over time.[105]


Within the next few years the role and operation of DNA in genetic inheritance were discovered, leading to what is now known as the "Central Dogma" of molecular 生物学.[106]


在1960年代时, 分子系统发生学, the 调查研究 of 演化的 "family trees" by 生物化学中的技术, 开始产生影响, 尤其是当其的研究提出人类与分化的时间远远晚于当时一般认为的时间。 [註 1][107]


尽管这个早期研究比较的是猿与人类身上的蛋白质,而现在大多数的分子系统发生学研究比较的是RNADNA[108]

See also

[编辑]

Notes

[编辑]

[编辑]

(复制而来,到时再修改)

  1. ^ 人类学界过去一般都认为腊玛古猿是人科最早的化石代表。这类化石的年代是距今大约1,400~800万年,因而一般认为人类从猿的系统(分类上的猿科)中开始分化出来的时间,也就是人类的起源是在1,400万年前或更早。从本世纪70年代中期开始,分子人类学的研究和更多的腊玛古猿类化石的发现,对这种观点提出了疑问。分子生物学通过对各种现代猿和现代人的蛋白质相似性的研究,表明亲缘关系较近的物种,具有较多相似的蛋白质。如果由共同祖先演化来的两个种分歧的时间较短,则它们具有较多的相似的蛋白质,而分歧时间较长的则较少,应用清蛋白和输铁蛋白的免疫学、免疫抗散、DNA杂交等方法所得的结果,都表明人和猿(黑猩猩)是较晚才开始分化的,距今不过400~500万年。在70年代前半,古人类学家一般认为这些数据都是从现代的猿和人得出的,是间接的证据,与从化石的直接证据得出的年代有很大的差距,因而认为这些数据是不可靠的。70年代后期和80年代初,分子人类学的研究有了更大的进展,对人和猿分离的时间的推算也逐渐加长,认为可能是在距今600万年前,从而受到许多人类学家的重视。
[编辑]

Template:生物学-footer

参考资料

[编辑]
  1. ^ 1.0 1.1 Cowen, R. History of 生命 3rd. Blackwell Science. 2000: xi. ISBN 0-632-04444-6. 
  2. ^ Laporte, L.F. What, after All, Is 古生物学?. PALAIOS. 1988, 3 (5): 453. JSTOR 3514718. doi:10.2307/3514718.  已忽略未知参数|month=(建议使用|date=) (帮助)
  3. ^ 3.0 3.1 Laudan, R. What's so Special about the Past?. Nitecki, M.H., and Nitecki, D.V. (编). History and 演变. SUNY Press. 1992: 58 [7 February 2010]. ISBN 0-7914-1211-3. 
  4. ^ 4.0 4.1 4.2 Cleland, C.E. Methodological and Epistemic Differences between 历史学的 Science and 实验al Science (PDF). Philosophy of Science. 2002, 69 (3): 474–496 [September 17, 2008]. doi:10.1086/342453.  已忽略未知参数|month=(建议使用|date=) (帮助)
  5. ^ McGraw-Hill Encyclopedia of Science & Technology. McGraw-Hill. 2002: 58. ISBN 0-07-913665-6. 
  6. ^ Laudan, R. What's so Special about the Past?. Nitecki, M.H., and Nitecki, D.V. (编). History and 演变. SUNY Press. 1992: 57. ISBN 0-7914-1211-3. 
  7. ^ How does 古生物学 differ from anthropology and 考古学?. University of California Museum of 古生物学. [September 17, 2008]. 
  8. ^ 8.0 8.1 8.2 Brasier, M., McLoughlin, N., Green, O., and Wacey, D. A fresh look at the 化石 证据 for early Archaean cellular 生命 (PDF). Philosophical Transactions of the Royal Society: 生物学. 2006, 361 (1470): 887–902 [August 30, 2008]. PMC 1578727可免费查阅. PMID 16754605. doi:10.1098/rstb.2006.1835.  已忽略未知参数|month=(建议使用|date=) (帮助)
  9. ^ 9.0 9.1 Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-二叠纪 biotic crisis. 地质学. 2001, 29 (4): 351–354. Bibcode:2001Geo....29..351T. doi:10.1130/0091-7613(2001)029<0351:RASCOM>2.0.CO;2. 
  10. ^ 10.0 10.1 Peterson, Kevin J., and Butterfield, N.J. Origin of the Eumetazoa: Testing ecological predictions of 分子钟s against the Proterozoic 化石 record. Proceedings of the National Academy of Sciences. 2005, 102 (27): 9547–52. Bibcode:2005PNAS..102.9547P. PMC 1172262可免费查阅. PMID 15983372. doi:10.1073/pnas.0503660102. 
  11. ^ Hutchinson, John R.; Garcia, M. 暴龙 was not a fast runner. Nature. 28 February 2002, 415 (6875): 1018–1021. PMID 11875567. doi:10.1038/4151018a.  Summary in press release No Olympian: Analysis hints T. rex ran slowly, if at all
  12. ^ Meers, M.B. Maximum bite force and prey size of 暴龙 rex and their relationships to the inference of feeding behavior. 历史学的 生物学: A Journal of Paleo生物学. 2003, 16 (1): 1–12. doi:10.1080/0891296021000050755.  已忽略未知参数|month=(建议使用|date=) (帮助)
  13. ^ Bruner, Emiliano. Geometric morphometrics and palaeoneurology: 脑 sh猿 演变 in the 属 Homo. Journal of Human 演变. 2004, 47 (5): 279–303 [27 September 2011]. PMID 15530349. doi:10.1016/j.jhevol.2004.03.009.  已忽略未知参数|month=(建议使用|date=) (帮助)
  14. ^ Cady, S.L. 太空生物学: A New Frontier for 21st Century 古生物学家s. PALAIOS. 1998, 13 (2): 95–97. JSTOR 3515482. PMID 11542813. doi:10.2307/3515482.  已忽略未知参数|month=(建议使用|date=) (帮助)
  15. ^ Plotnick, R.E. A Somewhat Fuzzy Snapshot of Employment in 古生物学 in the United States. Palaeontologia Electronica (Coquina Press). [September 17, 2008]. ISSN 1094-8074. 
  16. ^ 16.0 16.1 What is 古生物学?. University of California Museum of 古生物学. [September 17, 2008]. 
  17. ^ Kitchell, J.A. 演化的 Paleocology: Recent Contributions to 演化的 Theory. Paleo生物学. 1985, 11 (1): 91–104 [September 17, 2008]. 
  18. ^ Hoehler, T.M., Bebout, B.M., and Des Marais, D.J. The role of 微生物席s in the production of reduced gases on the early 地球. Nature. 19 July 2001, 412 (6844): 324–327 [July 14, 2008]. PMID 11460161. doi:10.1038/35085554. 
  19. ^ 19.0 19.1 Hedges, S.B., Blair, J.E, Venturi, M.L., and Shoe, J.L. A molecular timescale of 真核细胞 演变 and the rise of complex 多细胞的 生命. BMC 演化的 生物学. 2004, 4: 2 [July 14, 2008]. PMC 341452可免费查阅. PMID 15005799. doi:10.1186/1471-2148-4-2.  已忽略未知参数|month=(建议使用|date=) (帮助)
  20. ^ 古气候学. Ohio State University. [September 17, 2008]. 
  21. ^ 21.0 21.1 Algeo, T.J., and Scheckler, S.E. Terrestrial-marine teleconnections in the 泥盆纪: links between the 演变 of land plants, weathering processes, and marine 缺氧事件s. Philosophical Transactions of the Royal Society: 生物学. 1998, 353 (1365): 113–130. PMC 1692181可免费查阅. doi:10.1098/rstb.1998.0195. 
  22. ^ 生物地层学: William Smith 请检查|url=值 (帮助). [September 17, 2008]. 
  23. ^ Biogeography: Wallace and Wegener (1 of 2) 请检查|url=值 (帮助). University of California Museum of 古生物学 and University of California at Berkeley. [September 17, 2008]. 
  24. ^ 24.0 24.1 What is 古生物学?. University of California Museum of 古生物学. [September 17, 2008]. 
  25. ^ Benton MJ, Wills MA, Hitchin R. Quality of the 化石 record through time. Nature. 2000, 403 (6769): 534–7. Bibcode:2000Natur.403..534B. PMID 10676959. doi:10.1038/35000558. 
    Non-technical summary
  26. ^ Butterfield, N.J. Exceptional 化石 Preservation and the 寒武纪大爆发. Integrative and Comparative 生物学. 2003, 43 (1): 166–177 [June 28, 2008]. PMID 21680421. doi:10.1093/icb/43.1.166. 
  27. ^ Cowen, R. History of 生命 3rd. Blackwell Science. 2000: 61. ISBN 0-632-04444-6. 
  28. ^ Butterfield, N.J. 生态学 and 演变 of 寒武纪 plankton (PDF). The 生态学 of the 寒武纪 辐射 (New York: Columbia University Press). 2001: 200–216 [September 27, 2007]. 
  29. ^ Signor, P.W. Sampling bias, gradual 灭绝 patterns and catastrophes in the 化石 record. Geological implications of impacts of large asteroids and comets on the 地球 (Boulder, CO: Geological Society of America). 1982: 291–296 [January 1, 2008]. A 84–25651 10–42. 
  30. ^ 30.0 30.1 Fedonkin, M.A., Gehling, J.G., Grey, K., Narbonne, G.M., Vickers-Rich, P. The Rise of 动物s: 演变 and Diversification of the Kingdom 动物ia. JHU Press. 2007: 213–216 [November 14, 2008]. ISBN 0-8018-8679-1. 
  31. ^ e.g. Seilacher, A. How valid is Cruziana 地层学? (PDF). International Journal of 地球 Sciences. 1994, 83 (4): 752–758 [September 9, 2007]. Bibcode:1994GeoRu..83..752S. doi:10.1007/BF00251073. 
  32. ^ Brocks, J.J., Logan, G.A., Buick, R., and Summons, R.E. Archaean molecular 化石s and the rise of 真核细胞s. Science. 1999, 285 (5430): 1033–1036 [September 2, 2008]. PMID 10446042. doi:10.1126/science.285.5430.1033. 
  33. ^ 33.0 33.1 Cowen, R. History of 生命 3rd. Blackwell Science. 2000: 47–50. ISBN 0-632-04444-6. 
  34. ^ 34.0 34.1 Brochu, C.A, and Sumrall, C.D. Phylogenetic Nomenclature and 古生物学. Journal of 古生物学. 2001, 75 (4): 754–757. ISSN 0022-3360. JSTOR 1306999. doi:10.1666/0022-3360(2001)075<0754:PNAP>2.0.CO;2.  已忽略未知参数|month=(建议使用|date=) (帮助)
  35. ^ Ereshefsky, M. The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy. Cambridge University Press. 2001: 5. ISBN 0-521-78170-1. 
  36. ^ Cohen, B. L. and Holmer, L. E. and Luter, C. The 腕足动物 fold: a neglected body plan hypothesis (PDF). Palaeontology. 2003, 46 (1): 59–65 [August 7, 2008]. doi:10.1111/1475-4983.00287. 
  37. ^ 37.0 37.1 Martin, M.W.; Grazhdankin, D.V.; Bowring, S.A.; Evans, D.A.D.; Fedonkin, M.A.; Kirschvink, J.L. Age of Neoproterozoic 两侧对称动物n Body and 遗迹化石s, White Sea, Russia: Implications for Metazoan 演变. Science (abstract). May 5, 2000, 288 (5467): 841–5. Bibcode:2000Sci...288..841M. PMID 10797002. doi:10.1126/science.288.5467.841. 
  38. ^ Pufahl, P.K., Grimm, K.A., Abed, A.M., and Sadaqah, R.M.Y. Upper 白垩纪 (Campanian) phosphorites in Jordan: implications for the formation of a south Tethyan phosphorite giant. 沉积(沉淀物)ary 地质学. 2003, 161 (3–4): 175–205. Bibcode:2003SedG..161..175P. doi:10.1016/S0037-0738(03)00070-8.  已忽略未知参数|month=(建议使用|date=) (帮助)
  39. ^ Geologic Time: Radiometric Time Scale. U.S. Geological Survey. [September 20, 2008]. 
  40. ^ Löfgren, A. The conodont fauna in the Middle Ordovician Eoplacognathus pseudoplanus Zone of Baltoscandia. Geological Magazine. 2004, 141 (4): 505–524 [November 17, 2008]. doi:10.1017/S0016756804009227. 
  41. ^ Gehling, James; Jensen, Sören; Droser, Mary; Myrow, Paul; Narbonne, Guy. Burrowing below the basal 寒武纪 GSSP, Fortune Head, Newfoundland. Geological Magazine. 2001, 138 (2): 213–218 [November 17, 2008]. doi:10.1017/S001675680100509X.  已忽略未知参数|month=(建议使用|date=) (帮助)
  42. ^ e.g. Gehling, James; Jensen, Sören; Droser, Mary; Myrow, Paul; Narbonne, Guy. Burrowing below the basal 寒武纪 GSSP, Fortune Head, Newfoundland. Geological Magazine. 2001, 138 (2): 213–218 [November 17, 2008]. doi:10.1017/S001675680100509X.  已忽略未知参数|month=(建议使用|date=) (帮助)
  43. ^ Hug, L.A., and Roger, A.J. The Impact of 化石s and Taxon Sampling on Ancient Molecular Dating Analyses. Molecular 生物学 and 演变. 2007, 24 (8): 889–1897. PMID 17556757. doi:10.1093/molbev/msm115. 
  44. ^ * Early 地球 Likely Had 大陆s And Was Habitable. 2005-11-17. 
    * Cavosie, A. J.; J. W. Valley, S. A., Wilde, and E.I.M.F. Magmatic δ18O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. 地球 and 行星ary Science Letters. July 15, 2005, 235 (3–4): 663–681. Bibcode:2005E&PSL.235..663C. doi:10.1016/j.epsl.2005.04.028. 
  45. ^ Dauphas, N., Robert, F., and Marty, B. The Late Asteroidal and Cometary Bombardment of 地球 as Recorded in Water Deuterium to Protium Ratio. Icarus. 2000, 148 (2): 508–512. Bibcode:2000Icar..148..508D. doi:10.1006/icar.2000.6489.  已忽略未知参数|month=(建议使用|date=) (帮助)
  46. ^ Schopf, J. 化石 证据 of Archaean 生命. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1470): 869–85. PMC 1578735可免费查阅. PMID 16754604. doi:10.1098/rstb.2006.1834. 
  47. ^ * Arrhenius, S. The Propagation of 生命 in Space. Die Umschau volume=7. 1903: 32. Bibcode:1980qel..book...32A.  Reprinted in Goldsmith, D., (编). The Quest for Extraterrestrial 生命. University Science Books. ISBN 0-19-855704-3. 
    * Hoyle, F., and Wickramasinghe, C. On the Nature of Interstellar Grains. Astro物理学 and Space Science. 1979, 66: 77–90. Bibcode:1979Ap&SS..66...77H. doi:10.1007/BF00648361. 
    * Crick, F. H.; Orgel, L. E. Directed 泛种论. Icarus. 1973, 19 (3): 341–348. Bibcode:1973Icar...19..341C. doi:10.1016/0019-1035(73)90110-3. 
  48. ^ Peretó, J. Controversies on the origin of 生命 (PDF). Int. Microbiol. 2005, 8 (1): 23–31 [October 7, 2007]. PMID 15906258. 
  49. ^ Manten, A.A. Some problematic shallow-marine structures. Marine Geol. 1966, 4 (3): 227–232 [June 18, 2007]. doi:10.1016/0025-3227(66)90023-5. 
  50. ^ Krumbein, W.E., Brehm, U., Gerdes, G., Gorbushina, A.A., Levit, G. and Palinska, K.A. Biofilm, Biodictyon, Biomat Microbialites, Oolites, 叠层石s, Geophysiology, Global Mechanism, Parahistology. Krumbein, W.E., Paterson, D.M., and Zavarzin, G.A. (编). 化石 and Recent Biofilms: A Natural History of 生命 on 地球 (PDF). Kluwer Academic. 2003: 1–28 [July 9, 2008]. ISBN 1-4020-1597-6. 
  51. ^ Hoehler, T.M., Bebout, B.M., and Des Marais, D.J. The role of 微生物席s in the production of reduced gases on the early 地球. Nature. July 19, 2001, 412 (6844): 324–327 [July 14, 2008]. PMID 11460161. doi:10.1038/35085554. 
  52. ^ Nisbet, E.G., and Fowler, C.M.R. Archaean metabolic 演变 of 微生物席s (PDF). Proceedings of the Royal Society: 生物学. December 7, 1999, 266 (1436): 2375. PMC 1690475可免费查阅. doi:10.1098/rspb.1999.0934. 
  53. ^ Gray MW, Burger G, Lang BF. Mitochondrial 演变. Science. 1999, 283 (5407): 1476–81. Bibcode:1999Sci...283.1476G. PMID 10066161. doi:10.1126/science.283.5407.1476.  已忽略未知参数|month=(建议使用|date=) (帮助)
  54. ^ El Albani, Abderrazak; Bengtson, Stefan; Canfield, Donald E.; Bekker, Andrey; Macchiarelli, Reberto; Mazurier, Arnaud; Hammarlund, Emma U.; Boulvais, Philippe; Dupuy, Jean-Jacques. Large colonial 生命体s with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature. 2010, 466 (7302): 100–104. Bibcode:2010Natur.466..100A. PMID 20596019. doi:10.1038/nature09166.  已忽略未知参数|month=(建议使用|date=) (帮助)
  55. ^ Butterfield, N.J. Bangiomorpha pubescens n. gen., n. sp.: implications for the 演变 of sex, 多细胞的ity, and the Mesoproterozoic/Neoproterozoic 辐射 of 真核细胞s. Paleo生物学. 2000, 26 (3): 386–404 [2008-09-02]. ISSN 0094-8373. doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2.  已忽略未知参数|month=(建议使用|date=) (帮助)
  56. ^ Butterfield, N.J. Probable Proterozoic fungi. Paleo生物学. 2005, 31 (1): 165–182 [2008-09-02]. ISSN 0094-8373. doi:10.1666/0094-8373(2005)031<0165:PPF>2.0.CO;2. 
  57. ^ Chen, J.-Y., Oliveri, P., Gao, F., Dornbos, S.Q., Li, C-W., Bottjer, D.J. and Davidson, E.H. Pre寒武纪 动物 生命: Probable Developmental and Adult 刺细胞动物n Forms from Southwest China (PDF). Developmental 生物学. 2002, 248 (1): 182–196 [September 3, 2008]. PMID 12142030. doi:10.1006/dbio.2002.0714.  已忽略未知参数|month=(建议使用|date=) (帮助)
  58. ^ Bengtson, S. Lipps, J.H., and Waggoner, B.M. , 编. Neoproterozoic — 寒武纪 Biological R演变s (PDF). Paleontological Society P猿rs. 2004, 10: 67–78 [July 18, 2008].  |contribution=被忽略 (帮助)
  59. ^ 59.0 59.1 Marshall, C.R. Explaining the 寒武纪 "Explosion" of 动物s. Annu. Rev. 地球 行星. Sci. 2006, 34: 355–384 [November 6, 2007]. Bibcode:2006AREPS..34..355M. doi:10.1146/annurev.地球.33.031504.103001. 
  60. ^ Conway Morris, S. Once we were worms. New Scientist. August 2, 2003, 179 (2406): 34 [September 5, 2008]. 
  61. ^ Sansom I.J., Smith, M.M., and Smith, M.P. The 奥陶纪 辐射 of 脊椎动物. Ahlberg, P.E. (编). Major Events in Early Vertebrate 演变. Taylor and Francis. 2001: 156–171. ISBN 0-415-23370-4. 
  62. ^ Selden, P.A. "Terrestrialization of 动物s". Briggs, D.E.G., and Crowther, P.R. (编). Palaeo生物学 II: A Synthesis. Blackwell. 2001: 71–74 [September 5, 2008]. ISBN 0-632-05149-3. 
  63. ^ 63.0 63.1 Kenrick, P., and Crane, P.R. The origin and early 演变 of plants on land (PDF). Nature. 1997, 389 (6646): 33 [2010-11-10]. Bibcode:1997Natur.389...33K. doi:10.1038/37918.  已忽略未知参数|month=(建议使用|date=) (帮助)
  64. ^ Laurin, M. How 脊椎动物 Left the Water. Berkeley, California, USA.: University of California Press. 2010. ISBN 978-0-520-26647-6. 
  65. ^ MacNaughton, R.B., Cole, J.M., Dalrymple, R.W., Braddy, S.J., Briggs, D.E.G., and Lukie, T.D. First steps on land: Arthropod trackways in 寒武纪-Ordovician eolian sandstone, southeastern Ontario, Canada 请检查|url=值 (帮助). 地质学. 2002, 30 (5): 391–394 [2008-09-05]. Bibcode:2002Geo....30..391M. ISSN 0091-7613. doi:10.1130/0091-7613(2002)030<0391:FSOLAT>2.0.CO;2.  已忽略未知参数|month=(建议使用|date=) (帮助)
  66. ^ Gordon, M.S, Graham, J.B., and Wang, T. Revisiting the Vertebrate Invasion of the Land. Physiological and Biochemical Zoology. September/October 2004, 77 (5): 697–699. doi:10.1086/425182. 
  67. ^ Clack, J.A. Getting a Leg Up on Land. November 2005 [September 6, 2008].  已忽略未知参数|newsp猿r= (帮助)
  68. ^ Luo, Z., Chen, P., Li, G., & Chen, M. A new eutriconodont 哺乳动物 and 演化的 development in early 哺乳动物s. Nature. March 2007, 446 (7133): 288–293. Bibcode:2007Natur.446..288L. PMID 17361176. doi:10.1038/nature05627. 
  69. ^ 69.0 69.1 Padian, Kevin. Basal Avialae. Weishampel, David B.; Dodson, Peter; & Osmólska, Halszka (eds.) (编). The 恐龙ia Second. Berkeley: University of California Press. 2004: 210–231. ISBN 0-520-24209-2. 
  70. ^ Sidor, C.A., O'Keefe, F.R., Damiani, R., Steyer, J.S., Smith, R.M.H., Larsson, H.C.E., Sereno, P.C., Ide, O, and Maga, A. 二叠纪 tetrapods from the Sahara show climate-controlled endemism in Pangaea. Nature. 2005, 434 (7035): 886–889 [September 8, 2008]. Bibcode:2005Natur.434..886S. PMID 15829962. doi:10.1038/nature03393.  已忽略未知参数|month=(建议使用|date=) (帮助)
  71. ^ Benton M.J. When 生命 Nearly Died: The Greatest Mass 灭绝 of All Time. Thames & Hudson. 2005. ISBN 978-0-500-28573-2. 
  72. ^ Ward, P.D.; Botha, J.; Buick, R.; Kock, M.O.; Erwin, D.H.; Garrisson, G.H.; Kirschvink, J.L.; Smith, R. Abrupt and gradual 灭绝 among late 二叠纪 land 脊椎动物 in the Karoo Basin, South Africa. Science. 2005, 307 (5710): 709–714. PMID 15661973. doi:10.1126/science.1107068. 
  73. ^ Benton, M.J. 恐龙 Success in the Triassic: a Noncompetitive Ecological Model (PDF). Quarterly Review of 生物学. March 1983, 58 (1) [September 8, 2008]. 
  74. ^ Ruben, J.A., and Jones, T.D. Selective Factors Associated with the Origin of Fur and Feathers. American Zoologist. 2000, 40 (4): 585–596. doi:10.1093/icb/40.4.585. 
  75. ^ Alroy J. The 化石 record of 北美洲n 哺乳动物s: 证据 for a Paleocene 演化的 辐射. Systematic 生物学. 1999, 48 (1): 107–18. PMID 12078635. doi:10.1080/106351599260472.  已忽略未知参数|month=(建议使用|date=) (帮助)
  76. ^ Simmons, N.B., Seymour,K.L., Habersetzer, J.,and Gunnell, G.F. Primitive Early Eocene bat from Wyoming and the 演变 of flight and echolocation. Nature. 2008, 451 (7180): 818–821. Bibcode:2008Natur.451..818S. PMID 18270539. doi:10.1038/nature06549.  已忽略未知参数|month=(建议使用|date=) (帮助)
  77. ^ J. G. M. Thewissen, S. I. Madar, and S. T. Hussain. Ambulocetus natans, an Eocene cetacean (哺乳动物ia) from Pakistan. Courier Forschungsinstitut Senckenberg. 1996, 191: 1–86. 
  78. ^ Crane, P.R., Friis, E.M., and Pedersen, K.R. The Origin and Early Diversification of Angiosperms. Gee, H. (编). Shaking the Tree: Readings from Nature in the History of 生命. University of Chicago Press. 2000: 233–250 [September 9, 2008]. ISBN 0-226-28496-4. 
  79. ^ Crepet, W.L. Progress in understanding angiosperm history, success, and relationships: Darwin's abominably "perplexing phenomenon" (PDF). Proceedings of the National Academy of Sciences. 2000, 97 (24): 12939–12941 [September 9 , 2008]. Bibcode:2000PNAS...9712939C. PMC 34068可免费查阅. PMID 11087846. doi:10.1073/pnas.97.24.12939.  已忽略未知参数|month=(建议使用|date=) (帮助);
  80. ^ Wilson, E.O., and Hölldobler, B. Eusociality: Origin and consequences (PDF). Proceedigs of the National Acedemy of Sciences. 2005, 102 (38): 13367–13371 [September 7, 2008]. Bibcode:2005PNAS..10213367W. PMC 1224642可免费查阅. PMID 16157878. doi:10.1073/pnas.0505858102.  已忽略未知参数|month=(建议使用|date=) (帮助)
  81. ^ Brunet M., Guy, F., Pilbeam, D., Mackaye, H.T.; et al. A new hominid from the Upper Miocene of Chad, Central Africa. Nature. 2002, 418 (6894): 145–151 [September 9, 2008]. PMID 12110880. doi:10.1038/nature00879.  已忽略未知参数|month=(建议使用|date=) (帮助)
  82. ^ De Miguel, C., and M. Henneberg, M. Variation in hominid 脑 size: How much is due to method?. HOMO — Journal of Comparative Human 生物学. 2001, 52 (1): 3–58 [September 9, 2008]. doi:10.1078/0018-442X-00019. 
  83. ^ Leakey, Richard. The Origin of Humankind. Science Masters Series. New York, NY: Basic Books. 1994: 87–89. ISBN 0-465-05313-0. 
  84. ^ Benton, M.J. 6. Reptiles Of The Triassic. Vertebrate Palaeontology. Blackwell. 2004 [November 17, 2008]. ISBN 0-04-566002-6. 
  85. ^ Van Valkenburgh, B. Major patterns in the history of xarnivorous 哺乳动物s. Annual Review of 地球 and 行星ary Sciences. 1999, 27: 463–493. Bibcode:1999AREPS..27..463V. doi:10.1146/annurev.地球.27.1.463. 
  86. ^ 86.0 86.1 MacLeod, Norman. 灭绝!. 2001-01-06 [September 11, 2008]. 
  87. ^ Martin, R.E. Cyclic and secular variation in micro化石 bio矿化作用: clues to the bio地球化学的 演变 of Phanerozoic oceans. Global and 行星ary Change. 1995, 11 (1): 1. Bibcode:1995GPC....11....1M. doi:10.1016/0921-8181(94)00011-2. 
  88. ^ Martin, R.E. Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass, and diversity of the marine biosphere. PALAIOS. 1996, 11 (3): 209–219. JSTOR 3515230. doi:10.2307/3515230. 
  89. ^ Gould, S.J. Wonderful 生命: The Burgess Shale and the Nature of History. Hutchinson Radius. 1990: 194–206. ISBN 0-09-174271-4. 
  90. ^ 90.0 90.1 Rohde, R.A., and Muller, R.A. Cycles in 化石 diversity (PDF). Nature. 2005, 434 (7030): 208–210 [September 22, 2008]. Bibcode:2005Natur.434..208R. PMID 15758998. doi:10.1038/nature03339.  已忽略未知参数|month=(建议使用|date=) (帮助)
  91. ^ Rudwick, Martin J.S. The Meaning of 化石s 2nd. The University of Chicago Press. 1985: 39. ISBN 0-226-73103-0. 
  92. ^ Rudwick, Martin J.S. The Meaning of 化石s 2nd. The University of Chicago Press. 1985: 24. ISBN 0-226-73103-0. 
  93. ^ Needham, Joseph. Science and Civilization in China: Volume 3, 数学s and the Sciences of the Heavens and the 地球. Caves Books Ltd. 1986: 614. ISBN 0-253-34547-2. 
  94. ^ McGowan, Christopher. The Dragon Seekers. Persus Publishing. 2001: 3–4. ISBN 0-7382-0282-7. 
  95. ^ Palmer, D. 地球 Time: Exploring the Deep Past from Victorian England to the Grand Canyon. Wiley. 2005. ISBN 780470022214 请检查|isbn=值 (帮助). 
  96. ^ Greene, Marjorie; David Depew. The Philosophy of 生物学: An Episodic History. Cambridge University Press. 2004: 128–130. ISBN 0-521-64371-6. 
  97. ^ Bowler, Peter J.; Iwan Rhys Morus. Making Modern Science. The University of Chicago Press. 2005: 168–169. ISBN 0-226-06861-7. 
  98. ^ Rudwick, Martin J.S. The Meaning of 化石s 2nd. The University of Chicago Press. 1985: 200–201. ISBN 0-226-73103-0. 
  99. ^ Rudwick, Martin J.S. Worlds Before Adam: The Reconstruction of Geohistory in the Age of Reform. The University of Chicago Press. 2008: 48. ISBN 0-226-73128-6. 
  100. ^ 100.0 100.1 Buckland W & Gould SJ. 地质学 and Mineralogy Considered With Reference to Natural Theology (History of 古生物学). Ayer Company Publishing. 1980. ISBN 978-0-405-12706-9. 
  101. ^ Shu, D-G., Conway Morris, S., Han, J.; et al. Head and backbone of the Early 寒武纪 vertebrate Haikouichthys. Nature. January 2003, 421 (6922): 526–529 [September 21, 2008]. Bibcode:2003Natur.421..526S. PMID 12556891. doi:10.1038/nature01264. 
  102. ^ Everhart, Michael J. Oceans of Kansas: A Natural History of the Western Interior Sea. Indiana University Press. 2005: 17. ISBN 0-253-34547-2. 
  103. ^ Gee, H. (编). Rise of the Dragon: Readings from Nature on the Chinese 化石 Record. Chicago, Ill. ;London: University of Chicago Press. 2001: 276 [September 21, 2008]. ISBN 0-226-28491-3. 
  104. ^ Bowler, Peter J. 演变:The History of an Idea. University of California Press. 2003: 351–352. ISBN 0-520-23693-9. 
  105. ^ Bowler, Peter J. 演变:The History of an Idea. University of California Press. 2003: 325–339. ISBN 0-520-23693-9. 
  106. ^ Crick, F.H.C. On degenerate templates and the adaptor hypothesis 请检查|url=值 (帮助) (PDF). 1955 [October 4, 2008]. 
  107. ^ Sarich V.M., and Wilson A.C. Immunological time scale for hominid 演变. Science. 1967, 158 (3805): 1200–1203 [September 21, 2008]. Bibcode:1967Sci...158.1200S. PMID 4964406. doi:10.1126/science.158.3805.1200.  已忽略未知参数|month=(建议使用|date=) (帮助)
  108. ^ Page, R.D.M, and Holmes, E.C. Molecular 演变: A Phylogenetic Approach. Oxford: Blackwell Science. 1998: 2. ISBN 0-86542-889-1.