跳至內容

英文维基 | 中文维基 | 日文维基 | 草榴社区

唯一質數

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書

唯一素數Unique prime)是指一個不為2、5(在十進位時),有以下性質的質數p:不存在其他質數q,其倒數1 / q循環節長度和1 / p的循環節長度相等。唯一素數是在1980年代由Samuel Yates提出。

可以證明素數p其倒數的循環節長度為n若且唯若存在一自然數c使得下式成立(下面內容僅限於十進制範疇)

其中Φn(x)為n次的分圓多項式。至2010年為止,已經找到逾50個唯一素數或者有此性質的可能質數英語probable prime,但是小於10100的唯一素數只有23個。以下是這些唯一素數(OEIS數列A040017)及其循環節位數(OEIS數列A051627):

倒數循環節長度素數
13
211
337
4101
109,091
129,901
9333,667
14909,091
2499,990,001
36999,999,000,001
489,999,999,900,000,001
38909,090,909,090,909,091
191,111,111,111,111,111,111
2311,111,111,111,111,111,111,111
39900,900,900,900,990,990,990,991
62909,090,909,090,909,090,909,090,909,091
120100,009,999,999,899,989,999,000,000,010,001
15010,000,099,999,999,989,999,899,999,000,000,000,100,001
1069,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,091
93900,900,900,900,900,900,900,900,900,900,990,990,990,990,990,990,990,990,990,991
134909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,090,909,091
294142,857,157,142,857,142,856,999,999,985,714,285,714,285,857,142,857,142,855,714,285,571,428,571,428,572,857,143
196999,999,999,999,990,000,000,000,000,099,999,999,999,999,000,000,000,000,009,999,999,999,999,900,000,000,000,001

倒數循環節長度294位的唯一素數類似7的倒數(0.142857142857142857...)。

接續上表的第24個唯一素數有128位,倒數循環節長度為320位,可以寫成(932032)2+1,其中下標n表示前面的一個數字或一組數字會重覆出現n次。

所有循環單位素數都是唯一素數。依照循環單位素數及循環單位可能素數出現的頻率來看,唯一素數非常的少見,不過數學家們仍強烈推論有無窮多個唯一素數。

至2010年為止,循環單位(10270343-1)/9是已知最大的可能唯一素數[1]

至1996年為止,確定是質數的最大唯一素數是(101132 + 1)/10001,若用前文中的表示法,可以表示為(99990000)141+ 1,其倒數循環節長度為為2264位,後來陸續證明更大的唯一素數,至2010年為止,確定是質數的最大唯一素數有10081位數[2]

二進制中的唯一質數

[編輯]

3, 5, 7, 11, 13, 17, 19, 31, 41, 43, 73, 127, 151, 241, 257, 331, 337, 683, ...... (OEIS數列A144755):

其循環節長度分別為: 2, 4, 3, 10, 12, 8, 18, 5, 20, 14, 9, 7, 15, 24, 16, 30, 21, 22, ......(OEIS數列A161508):

這當中包含了所有費馬質數(循環節長度為2的乘方),梅森質數(循環節長度為質數)及瓦格斯塔夫質數(循環節長度為奇質數的兩倍)

以下為不超過264之二進制唯一質數列表:

倒數循環節長度素數二進位表示法
2311
45101
37111
10111011
12131101
8171 0001
18191 0011
5311 1111
204110 1001
144310 1011
973100 1001
7127111 1111
151511001 0111
242411111 0001
162571 0000 0001
303311 0100 1011
213371 0101 0001
2268310 1010 1011
262,7311010 1010 1011
425,4191 0101 0010 1011
138,1911 1111 1111 1111
3443,6911010 1010 1010 1011
4061,6811111 0000 1111 0001
3265,5371 0000 0000 0000 0001
5487,2111 0101 0100 1010 1011
17131,0711 1111 1111 1111 1111
38174,76310 1010 1010 1010 1011
27262,657100 0000 0010 0000 0001
19524,287111 1111 1111 1111 1111
33599,4791001 0010 0101 1011 0111
462,796,20310 1010 1010 1010 1010 1011
5615,790,3211111 0000 1111 0000 1111 0001
9018,837,0011 0001 1111 0110 1110 0000 1001
7822,366,8911 0101 0101 0100 1010 1010 1011
62715,827,88310 1010 1010 1010 1010 1010 1010 1011
312,147,483,647111 1111 1111 1111 1111 1111 1111 1111
804,278,255,3611111 1111 0000 0000 1111 1111 0000 0001
1204,562,284,5611 0000 1111 1110 1110 1111 0000 0001 0001
12677,158,673,9291 0001 1111 0111 0000 0011 1110 1110 0000 1001
1501,133,836,730,4011 0000 0111 1111 1101 1110 1111 1000 0000 0010 0001
862,932,031,007,40310 1010 1010 1010 1010 1010 1010 1010 1010 1010 1011
984,363,953,127,29711 1111 1000 0000 1111 1110 0000 0011 1111 1000 0001
494,432,676,798,593100 0000 1000 0001 0000 0010 0000 0100 0000 1000 0001
6910,052,678,938,0391001 0010 0100 1001 0010 0101 1011 0110 1101 1011 0111
65145,295,143,558,1111000 0100 0010 0101 0010 1001 0110 1011 0101 1011 1101 1111
17496,076,791,871,613,6111 0101 0101 0101 0101 0101 0101 0100 1010 1010 1010 1010 1010 1010 1011
77581,283,643,249,112,9591000 0001 0001 0010 0010 0110 0100 1100 1101 1001 1011 1011 0111 0111 1111
93658,812,288,653,553,0791001 0010 0100 1001 0010 0100 1001 0011 0110 1101 1011 0110 1101 1011 0111
122768,614,336,404,564,6511010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1010 1011
612,305,843,009,213,693,9511 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111
859,520,972,806,333,758,4311000 0100 0010 0001 0100 1010 0101 0010 1011 0101 1010 1101 0111 1011 1101 1111
19218,446,744,069,414,584,3211111 1111 1111 1111 1111 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000 0001

參考資料

[編輯]
  1. ^ PRP Records: Probable Primes Top 10000. [2013-01-11]. (原始內容存檔於2010-02-25). 
  2. ^ The Top Twenty Unique; Chris Caldwell. [2013-01-11]. (原始內容存檔於2020-11-20). 

外部連結

[編輯]