注意力不足过动症的病理生理学

维基百科,自由的百科全书
目前的研究模型包含了 中脑皮质素-多巴胺神经传导物质通道系统英语mesocorticolimbic projection 及蓝斑核-去甲肾上腺素系统。[1][2][3]

关于注意力不足过动症的病理生理学,截至公元2019年7月底,注意力不足过动症(ADHD)被认为是肇因于部分脑内的神经传导物质系统的损伤(特别是与多巴胺和正肾上腺素有关的神经传导系统),进而对患者的脑部执行功能产生不良的影响。[1][2]多巴胺与正肾上腺素的脑内神经通道英语Neural_pathway大多起源自脑内的腹侧被盖区蓝斑核,并由此投射至不同的脑区且管理许多认知的流程(与认知功能相关的处理流程)。[1][3]特别是那些投射至前额叶和纹状体脑内多巴胺通道英语dopaminergic pathway脑内正肾上腺素通道/蓝斑核系统。它们主要的工作就是负责调节执行功能(认知和行为的功能与管理)、动机酬赏/报偿的感受能力、和运动神经的功能[注 1][1][2][3]以上是目前已知在注意力不足过动症的病理生理学中扮演主要脚色的几条脑内神经通道英语Neural_pathway。也已经有人提议强化对于注意力不足过动症更全面的概观以及更多可能与之相关的脑内神经通道之探究。[2][5][6]

大脑结构[编辑]

ADHD的左前额叶通常与控制组有显著不同[2][7]

在儿童注意力不足过动症患者中,普遍存有一些脑部结构(特别是左侧的前额叶、后顶叶皮质英语posterior parietal cortex)在体积上小于平均值的现象。[2][7]其他诸如注意力不足过动症患者的:前额 - 纹状体-小脑和前额叶-纹状体-丘脑回路也被发现与非注意力不足过动症患者不同。[2][5][6]

ADHD儿童的双侧额叶顶叶颞叶灰质体积小于同样正在发育中的非ADHD儿童,ADHD儿童的脑部构造跟对照组(同样正在发育中的非ADHD儿童)相比后,体积差异最大的部分是右额叶和左颞叶。进一步检视实验组(ADHD儿童)与对照组(非ADHD儿童)的额叶子区域后发现,实验组与对照组彼此之间的左侧眶额叶皮质、左侧初级运动皮层(M1)、和左侧运动辅助区(SMC)体积差异最大。[8] 与“特定亚区(左前额叶、左前叶、左额叶、M1和右SMC)相关的ADHD关联程度”跟“ADHD症状的严重程度”成反比,举例来说:当前述皮层的体积越小则“过动—冲动”症状的严重程度越高,前述皮层的体积与“过动—冲动”症状的严重程度成反比。[8]ADHD个案组在伏隔核海马回杏仁核基底核颅内等区域之体积皆有较健康控制组(非ADHD儿童)更小的体积;实验组(ADHD儿童)与对照组(非ADHD儿童)在苍白球英语globus pallidus丘脑的体积相比之下则没有在统计学上达到显著差异。进一步分析发现,在大部分区域(包括杏仁核、基底核、伏隔核、海马回),小于15岁的ADHD孩童与健康发展孩童(非ADHD儿童)的脑体积差异程度,较持续到成人的ADHD患者(大于21岁)与健康受试成人(非ADHD成人)的比较差异程度来得大,这暗示著ADHD患者之大脑发展迟缓的现象。[9]

另外,目前学术界对于ADHD药物治疗是否会对于ADHD患者的大脑内部结构体积产生改变,出现了不一致的研究结果。[9]

研究发现,ADHD青少年患者脑中的白质路径(white matter tracts)存在不对称的情况,这可能表示患者脑中各脑区的整合于连动发展出现不一致的问题,这样的问题或许与ADHD患者的行为模式相关联。[10]

神经传导物质的通道/路径[编辑]

目前的研究模型包含了 中脑皮质素-多巴胺通道英语mesocorticolimbic projection 及蓝斑核-去甲肾上腺素系统。[1][2][3]用于治疗注意力不足过动症的中枢神经刺激剂,其疗效可能是起因于它增进了神经传导物质在这些系统中的活动。[2][3][11]注意力不足过动症患者脑部中的 5-羟色胺能英语serotoninergic(与血清素有关)通道、 谷氨酸能英语glutamate (neurotransmitter)(一种神经传导物质)通道、 或胆碱能英语cholinergic通道可能也存有一些导致注意力不足过动症症状的原因。[11][12][13]

另有研究发现,注意力不足过动症是由一种发生于脑前额叶遗传性的多巴胺新陈代谢失常有关[14][15][16]。更近期的研究认为正肾上腺素的新陈代谢亦会对病情有所影响[16]

Zametkin等人在1990年发表的一篇论文中利用核磁共振成像技术研究了成人ADHD患者的脑部葡萄糖代谢,成像结果如上图。图中颜色越接近白色表示葡萄糖利用率越高,左侧为非ADHD成人,右侧为ADHD成人患者,可见二者有显著不同。 [17]

利用核磁共振成像技术(MRI)对脑部扫描的研究显示患有ADHD和非ADHD的孩子的图象有分别。不少科学家认为这足以证明ADHD是和脑部创伤有关。但脑部影像只说明了作为脑内燃料的葡萄糖的分布。在成人ADHD患者的脑扫描中,控制专注力的部分由于葡萄糖水平较低,所以显得不太活跃。不过,没有证据显示低葡萄糖水平与注意力缺陷有关联,亦无法推论两者之间的因果关系[17]

执行功能和动机[编辑]

注意力不足过动症的症状起因于某些执行功能上的缺陷,例如:注意力/专注力的控制冲动-过动控制、及工作记忆[19][2][3][20]执行功能简单来说就是一整群包含认知处理过程的集合[a]。而这集合必须能够成功的帮助一个人选择并督促自己做出得以实现他那经过深思熟虑过后的目标之行为。[19][3][20]执行功能也帮助一个人能适当的应对新奇、复杂、全面、或模棱两可的情况[21][22]

注意力不足过动症患者先天的执行功能损伤造成以下这些症状:难以维持有规划的、难以有组织性的、缺乏时间观念、过度的拖延、难以保持专注、难以把注意力放对地方、难以忽略与任务不相干的外务/诱惑、有情绪管理的困难、难以把细节记起来。[19][2][3]注意力不足过动症患者在长期记忆的表现可看出注意力不足过动症患者的长期记忆是没有损伤的。注意力不足过动症患者在提取长期记忆时所产生的困难显然是肇因于工作记忆[b]的受损[19][23]。 端视一个注意力不足过动症患者其脑部发展的程度与其所在环境对其执行功能要求的程度的比例,因此有些注意力不足过动症患者可能直到青少年时期甚至是成年期(特别是成年初期)才开始显露出注意力不足过动症的症状。[19][24][25][26]

注意力不足过动症与患者在儿童青少年乃至成年时期缺乏动机相关。儿童青少年甚至成人注意力不足过动症患者会发现自己比起眼前立即的回馈、酬赏、或满足,更难以专注在长远的目标、回报、回馈、酬赏、或满足,并展现出对于眼前立即的回馈、酬赏、或满足的冲动言行。[27]

注释[编辑]

  1. ^ 也可当作是“团体、组织”
  2. ^ 此处的“工作记忆”等同“短期记忆”

备注[编辑]

  1. ^ 台湾儿童与青少年精神科医师高淑芬在其著作《找回专注力:成人ADHD全方位自助手册》提到,虽然“过动-冲动型”和“混合型”的ADHD从小就非常好动,坐不住,老是跑跑跳跳、追逐打闹,精力无穷,但其实这类孩子的运动协调性可能不太好,运动协调性较弱的表象为:肢体动作较大、动作较粗鲁。[4]
  2. ^ 神经通道(neuro-pathway)又译作“神经路径”

参见[编辑]

文献来源[编辑]

  1. ^ 1.0 1.1 1.2 1.3 1.4 Chandler DJ, Waterhouse BD, Gao WJ. New perspectives on catecholaminergic regulation of executive circuits: evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Front. Neural Circuits. 2014-05, 8: 53. PMC 4033238可免费查阅. PMID 24904299. doi:10.3389/fncir.2014.00053. 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Malenka RC, Nestler EJ, Hyman SE. Chapters 10 and 13. Sydor A, Brown RY (编). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York: McGraw-Hill Medical. 2009: 266, 315, 318–323. ISBN 9780071481274. Early results with structural MRI show thinning of the cerebral cortex in ADHD subjects compared with age-matched controls in prefrontal cortex and posterior parietal cortex, areas involved in working memory and attention. 
  3. ^ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Malenka RC, Nestler EJ, Hyman SE. Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin. Sydor A, Brown RY (编). Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York: McGraw-Hill Medical. 2009: 148, 154–157. ISBN 9780071481274. 
    NOTE: DA: dopamine, LC: locus coeruleus, VTA: ventral tegmental area, 5HT: serotonin (5-hydroxytryptamine)
  4. ^ 高淑芬. 找回專注力:成人ADHD全方位自助手冊. 博客来. 2016-05-09 [2018-09-03]. (原始内容存档于2016-11-30) (中文). 
  5. ^ 5.0 5.1 Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn. Sci. (Regul. Ed.). 2012-01, 16 (1): 17–26. PMC 3272832可免费查阅. PMID 22169776. doi:10.1016/j.tics.2011.11.007. Recent conceptualizations of ADHD have taken seriously the distributed nature of neuronal processing [10,11,35,36]. Most of the candidate networks have focused on prefrontal-striatal-cerebellar circuits, although other posterior regions are also being proposed [10]. 
  6. ^ 6.0 6.1 Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, Castellanos FX. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012-10, 169 (10): 1038–1055. PMC 3879048可免费查阅. PMID 22983386. doi:10.1176/appi.ajp.2012.11101521. 
  7. ^ 7.0 7.1 Krain AL, Castellanos FX. Brain development and ADHD. Clin Psychol Rev. 2006-08, 26 (4): 433–444. PMID 16480802. doi:10.1016/j.cpr.2006.01.005. 
  8. ^ 8.0 8.1 Jacobson, Lisa A.; Crocetti, Deana; Dirlikov, Benjamin; Slifer, Keith; Denckla, Martha Bridge; Mostofsky, Stewart H.; Mahone, E. Mark. Anomalous Brain Development Is Evident in Preschoolers With Attention-Deficit/Hyperactivity Disorder. Journal of the International Neuropsychological Society : JINS (Cambridge University Press (CUP)). 2018-03-26, 24 (6): 531–539. ISSN 1355-6177. PMC 6035105可免费查阅. PMID 29576028. doi:10.1017/s1355617718000103. 
  9. ^ 9.0 9.1 Hoogman, Martine; Bralten, Janita; Hibar, Derrek P; Mennes, Maarten; Zwiers, Marcel P; Schweren, Lizanne S J. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. The lancet. Psychiatry (Elsevier BV). 2017, 4 (4): 310–319. ISSN 2215-0366. PMC 5933934可免费查阅. PMID 28219628. doi:10.1016/s2215-0366(17)30049-4. 
  10. ^ Douglas. Hemispheric brain asymmetry differences in youths with attention-deficit/hyperactivity disorder. NeuroImage: Clinical. 2018, 18: 744–752. PMC 5988460可免费查阅. PMID 29876263. doi:10.1016/j.nicl.2018.02.020. 
  11. ^ 11.0 11.1 Bidwell LC, McClernon FJ, Kollins SH. Cognitive enhancers for the treatment of ADHD. Pharmacol. Biochem. Behav. 2011-08, 99 (2): 262–274. PMC 3353150可免费查阅. PMID 21596055. doi:10.1016/j.pbb.2011.05.002. 
  12. ^ Cortese S. The neurobiology and genetics of Attention-Deficit/Hyperactivity Disorder (ADHD): what every clinician should know. Eur. J. Paediatr. Neurol. 2012-09, 16 (5): 422–433. PMID 22306277. doi:10.1016/j.ejpn.2012.01.009. 
  13. ^ Lesch KP, Merker S, Reif A, Novak M. Dances with black widow spiders: dysregulation of glutamate signalling enters centre stage in ADHD. Eur Neuropsychopharmacol. 2013-06, 23 (6): 479–491. PMID 22939004. doi:10.1016/j.euroneuro.2012.07.013. 
  14. ^ Dresel, S; Krause, J; Krause, KH; LaFougere, C; Brinkbäumer, K; Kung, HF; Hahn, K; Tatsch, K. Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment.. European journal of nuclear medicine. 2000, 27 (10): 1518–24. ISSN 0340-6997. PMID 11083541. 
  15. ^ Krause, KH; Dresel, SH; Krause, J; la Fougere, C; Ackenheil, M. The dopamine transporter and neuroimaging in attention deficit hyperactivity disorder.. Neuroscience and biobehavioral reviews. 2003, 27 (7): 605–13. ISSN 0149-7634. PMID 14624805. 
  16. ^ 16.0 16.1 Bymaster, F. Atomoxetine Increases Extracellular Levels of Norepinephrine and Dopamine in Prefrontal Cortex of Rat A Potential Mechanism for Efficacy in Attention Deficit/Hyperactivity Disorder. Neuropsychopharmacology (Springer Nature). 2002, 27 (5): 699–711 [2017-02-17]. doi:10.1016/s0893-133x(02)00346-9. The selective norepinephrine (NE) transporter inhibitor atomoxetine (formerly called tomoxetine or LY139603) has been shown to alleviate symptoms in Attention Deficit/Hyperactivity Disorder (ADHD). 
  17. ^ 17.0 17.1 Cerebral Glucose Metabolism in Adults with Hyperactivity of Childhood Onset 互联网档案馆存档,存档日期2017-08-02.: Zametkin AJ, Nordahl TE, Gross M, King AC, Semple WE, Rumsey J, Hamburger S, Cohen RM. (1990) Cerebral glucose metabolism in adults with hyperactivity of childhood onset. New England Journal of Medicine 1990; 323(20): 1361-1366. November 15, 1990 doi:10.1056/NEJM199011153232001 Author address: Section on Clinical Brain Imaging, National Institute of Mental Health, NIH, Bethesda, MD 20892.
  18. ^ Russell Barkley. Barkley Deficits in Executive Functioning Scale. UpToDate. [2018-02-24]. (原始内容存档于2018-02-27). 
  19. ^ 19.0 19.1 19.2 19.3 19.4 Brown TE. ADD/ADHD and Impaired Executive Function in Clinical Practice. Curr Psychiatry Rep. 2008-10, 10 (5): 407–411. PMID 18803914. doi:10.1007/s11920-008-0065-7. 
  20. ^ 20.0 20.1 Diamond A. Executive functions. Annu. Rev. Psychol. 2013, 64: 135–168. PMC 4084861可免费查阅. PMID 23020641. doi:10.1146/annurev-psych-113011-143750. 
  21. ^ Executive Function: Development, Individual Differences, and Clinical Insights. ScienceDirect: 429. 2013-01-01 [2018-09-19]. doi:10.1016/B978-0-12-397267-5.00062-5. (原始内容存档于2020-10-19). Executive function (EF) is an umbrella term that encompasses the set of higher-order processes (such as inhibitory control, working memory, and attentional flexibility) that govern goal-directed action and adaptive responses to novel, complex, or ambiguous situations (Hughes et al., 2005). 
  22. ^ Nigg, Joel T. Annual Research Review: On the relations among self-regulation, self-control, executive functioning, effortful control, cognitive control, impulsivity, risk-taking, and inhibition for developmental psychopathology. Journal of child psychology and psychiatry, and allied disciplines (Wiley). 2017, 58 (4): 361–383. ISSN 0021-9630. PMC 5367959可免费查阅. PMID 28035675. doi:10.1111/jcpp.12675. 
  23. ^ Skodzik T, Holling H, Pedersen A. Long-Term Memory Performance in Adult ADHD: A Meta-Analysis. J. Atten. Disord. 2013-11. PMID 24232170. doi:10.1177/1087054713510561. 
  24. ^ 陈锦宏. 心動家族:注意力不足過動症ADHD的第三條路. 台湾心动家族儿童青少年关怀协会. Tc-adhd.com. 2016-12-13 [2017-02]. (原始内容存档于2018-02-24) (中文(台湾)). 
  25. ^ Attention deficit hyperactivity disorder in adults: Epidemiology, pathogenesis, clinical features, course, assessment, and diagnosis. UpToDate. 2016-11-03 [2017-10-29]. (原始内容存档于2017-10-30). Some adults present with impairment in a clinical setting only later in life when they confront new and increasingly complex tasks that characterize adulthood and that cannot be managed with their existing neuropsychological repertoire. 
  26. ^ Canela, Carlos; Buadze, Anna; Dube, Anish; Eich, Dominique; Liebrenz, Michael. Chao, Linda , 编. Skills and compensation strategies in adult ADHD – A qualitative study. PloS one (Public Library of Science (PLoS)). 2017-09-27, 12 (9): e0184964. ISSN 1932-6203. PMC 5617155可免费查阅. PMID 28953946. doi:10.1371/journal.pone.0184964. 
  27. ^ Modesto-Lowe V, Chaplin M, Soovajian V, Meyer A. Are motivation deficits underestimated in patients with ADHD? A review of the literature. Postgrad Med. 2013, 125 (4): 47–52. PMID 23933893. doi:10.3810/pgm.2013.07.2677. Previous studies suggest that a clinical approach using interventions to improve motivational processes in patients with ADHD may improve outcomes as children with ADHD transition into adolescence and adulthood.