跳至內容

英文维基 | 中文维基 | 日文维基 | 草榴社区

大斜方截角立方體堆砌

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
大斜方截角立方體堆砌
類型均勻堆砌
維度3
對偶多胞形絹英鍥形體堆砌英語Eighth pyramidille
類比截角正方形鑲嵌
數學表示法
考克斯特符號
英語Coxeter-Dynkin diagram
node_1 4 node_1 3 node_1 4 node_1 
考克斯特記號
英語Coxeter notation
[[4,3,4]]
纖維流形記號8o:2
施萊夫利符號t0,1,2,3{4,3,4}
性質
t
{3
4
}

t {2,8}
{4}
{6}
{8}
組成與佈局
頂點圖
絹英鍥形體
對稱性
對稱群
空間群Im3m (229)
考克斯特群[4,3,4],
特性
頂點正英語vertex-transitive

幾何學中,大斜方截角立方體堆砌是一種歐幾里得三維空間的半正堆砌,是由大斜方截半立方體正八角柱以1:3的比例堆砌而成。

康威大斜方截角立方體堆砌b-tCO-trille[1],因為它可以藉由對應的康威多面體變換而構造出來。其可以視為立方體堆砌經過「大斜方截半」變換構造而來,也可以視為由大斜方截半立方體堆砌而得,但大斜方截半立方體無法單獨堆砌,必須和其他多面體一起堆砌,而大斜方截角立方體堆砌是大斜方截半立方體正八角柱共同堆砌而得。

對稱性

[編輯]

由於大斜方截角立方體堆砌是由立方體堆砌為種子做大斜方截半變換而構造出來,因此其會保有種子(立方體堆砌)的部分或全部的對稱性,因此大斜方截角立方體堆砌具有對稱性,空間對稱性則為Im3m,與立方體堆砌的Pm3m有所差異,但經過表面塗色,node_1 4 node_1 3 node_1 4 node_1 ,其對稱性即可變為Pm3m空間平移對稱性。

 

表面塗色

[編輯]

大斜方截角立方體堆砌有兩種不同的表面塗色,胞的塗色模式不同,對稱性也會不同。在考克斯特記號的形式有兩種不同的方法能在大斜方截半立方體和正八角柱塗上顏色。在考克斯特記號與所述第一和最後一個分支能使對稱性加倍。這可以顯示用一種顏色塗滿所有大斜方截半立方體和正八角柱胞的對稱性。

兩種均勻表面塗色
對稱性 , [4,3,4] ×2, [[4,3,4]]
空間群 Pm3m (221) Im3m (229)
纖維流形 4:2 8o:2
表面塗色
考克斯特符號英語Coxeter diagram node_1 4 node_1 3 node_1 4 node_1  branch_11 4a4b nodes_11 
頂點圖

參考文獻

[編輯]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (包含11個凸半正鑲嵌、28個凸半正堆砌、和143個凸半正四維砌的全表)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication參與編輯, 1995, ISBN 978-0-471-01003-6 http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html頁面存檔備份,存於網際網路檔案館
    • (22頁) H.S.M.考克斯特, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 半正空間鑲嵌)
  • A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 (1905) 75–129.
  1. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292-298, includes all the nonprismatic forms)